

Poor accuracy Good precision

Poor accuracy
Poor precision

Error Analysis Dr. Forrest

PHYS 3110
University of Houston

Types of Error

- Instrumental
- Observational
- Environmental
- Theoretical

Types of Error

- Instrumental
- Accuracy limits of instrument
- Poorly calibrated instrument
- Fluctuating signal
- Broken instrument
- Observational
- Environmental
- Theoretical

Types of Error

- Instrumental
- Observational
- Parallax
- Misused instrument
- Environmental
- Theoretical

Types of Error

- Instrumental
- Observational
- Environmental
- Electrical power brown-out, causing low current
- Local magnetic field not accounted for
- wind
- Theoretical

Types of Error

- Instrumental
- Observational
- Environmental
- Theoretical
- Effects not accounted for or incorrectly ignored
- Friction
- Error in equations

Types of Error

Poor precision

- Random
- Can be quantified by statistical analysis
- Systematic
- Try to identify and get rid of
- Hopefully found during analysis; may need to repeat experiment!

True Value

Error for Different Types of Quantities

- Measured Quantities
- N Independent measurements of the same physical quantity
- Measurement of a series of N quantities that are dependent on an independent value, i.e. $x(t)$ or I(V).
- Calculated quantities
- Propogation of error

Statistical Analysis of Random

Error

- For n independent measurements, they should group around the true value. For large n, the average should tend to the true value

$$
\begin{aligned}
& \bar{x} \rightarrow x \\
& \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

- If the measurements are independent, can find the standard deviation, $\sigma . \sigma$ proportional to width of the distribution.

$$
\sigma=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

precision

Standard deviation of the mean

- $\sigma_{m}=\sigma / n^{1 / 2}$

$$
\sigma m=\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

- For $n>1$ measured values, report : $X=\bar{x} \pm \sigma_{m}$ - If $\sigma_{m}=0$ or < roughly $1 / 10$ precision, use accuracy of measurement device for reported error.
- If there is no systematic error, there is a $\sim 2 / 3$ probability that the true value is within $\pm \sigma_{m}$

Reporting Error $\overline{\mathrm{x}} \pm \sigma_{\mathrm{m}}$

- Significant figures:
- σ_{m} : one (sometimes two) sig. figs.
$-x_{\text {ave }}$: same precision as σ_{m}
$G=6.67430 \times 10^{-11}$
$\pm 0.00015 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
NIST, Fundamental Constants, https://physics.nist.gov/cgibin/cuu/Value?bg|search_for=universal_in! accessed 8/29/23.

Length $=1.53 \pm 0.05 \mathrm{~m}$

σ and σ_{m}

- σ represents the error in one measurement
- σ_{m} represents the error in the mean of n measurements

Gaussian Distribution

- Plot of measured value, versus number (N) of times that value was measured.
- IF error is random, for
 large n, this distribution tends to a Gaussian distribution.

$$
N(x)=\frac{n}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\bar{x})^{2}}{2 \sigma^{2}}}
$$

Fwhm $\cong 2.4 \sigma$

Gaussian Distribution

- Probability of one measurement being x,

$$
\mathrm{P}(\mathrm{x})=\mathrm{N}(\mathrm{x}) / \mathrm{n} \quad P(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-\left(x-\overline{)^{2}}\right.}{2 \sigma^{2}}}
$$

- The probability of a measurement being within $\pm \sigma$ of $\mathrm{X}_{\mathrm{ave}}$: $\quad P($ within $\sigma)=\int_{\bar{x}-\sigma}^{\bar{x}+\sigma} P(x) d x$
- Probability of being within $n \sigma$:

$$
\begin{aligned}
& \pm 1 \sigma=68.3 \% \\
& \pm 2 \sigma=95.5 \% \\
& \pm 3 \sigma=99.7 \%
\end{aligned}
$$

Poisson Distribution

$$
P(x)=\frac{(\bar{x})^{x} e^{-\bar{x}}}{x!}
$$

- Applies to processes described by an exponential, such as radioactive decay

- standard deviation $\sigma=\sqrt{ } x$
- For large $\mathrm{xave}_{\text {a }}$, i.e. for long counting times, the Poisson distribution tends to a Gaussian distribution with the same ave. and σ.

Reporting Error from a Poisson Process

- When measuring a physical process that you expect to follow a Poisson distribution, the error in one measurement is $x=x \pm \sigma=x \pm \sqrt{ } x$.
- Example:
- Measuring the intensity of radiation emitted by an α source and scattered by gold nuclei, at an angle θ, over 30 seconds.

Propagation of Errors

- Determining the error in a quantity calculated from measured data.
- Let x, y, z be measured values
- Let $\delta x, \delta y, \delta z$ be the corresponding estimated errors in the measurements. $x \pm \delta x$, etc.
- If one measurement, $\delta x=$ accuracy of the instrument. If n measurements of x , then use $x \pm \sigma_{x}$, where σ_{x} is the standard deviation of the mean of x.

Propagation of Errors

- Let $w(x, y, z)$ be a function of measured values. We want to find δw, the error in w.
- If the errors are uncorrelated, we assume $\mathrm{dx} \approx \delta \mathrm{x}$,
- If the errors are correlated, there are cross terms like
differential:

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial z} d z
$$

$$
\delta w=\sqrt{\left(\frac{\partial w}{\partial x} \delta x\right)^{2}+\left(\frac{\partial w}{\partial y} \delta y\right)^{2}+\left(\frac{\partial w}{\partial z} \delta z\right)^{2}}
$$

$$
\delta w^{2}=\sum_{i}\left(\frac{\partial w}{\partial x_{i}} \delta x_{i}\right)^{2}
$$

$$
\frac{\partial w}{\partial x} \frac{\partial w}{\partial y} \operatorname{cov}(\delta x, \delta y)
$$

Propagation of Errors

$$
\delta w^{2}=\sum_{i}\left(\frac{\partial w}{\partial x_{i}} \delta x_{i}\right)^{2}
$$

Some Examples:

- $w=a x+b y+c z$

$$
\delta w=\sqrt{(a \delta x)^{2}+(b \delta y)^{2}+(c \delta z)^{2}}
$$

- $w=k x^{a} y^{b} z^{c}$

$$
\delta w=\sqrt{\left(\frac{\mathrm{aw} \delta x}{x}\right)^{2}+\left(\frac{\mathrm{bw} \delta y}{y}\right)^{2}+\left(\frac{\mathrm{cw} \delta z}{z}\right)^{2}}
$$

$\partial w / \partial x=a k x^{a-1} y^{b} z^{c}$ $\partial w / \partial x=a w / x$

$$
\frac{\delta w}{w}=\sqrt{\left(\frac{\mathrm{a} \delta x}{x}\right)^{2}+\left(\frac{\mathrm{b} \delta y}{y}\right)^{2}+\left(\frac{\mathrm{c} \delta z}{z}\right)^{2}}
$$

- During lab, for a quick error estimate, just use the biggest term.

\% Error

- Precision $=\%$ error $=(\delta x / x) * 100 \%$
- Accuracy $=\%$ error compared to accepted
$=\left|x_{\text {calculated }}-x_{\text {accepted }}\right| / x_{\text {accepted }} * 100 \%$
- $\%$ difference $=\left|x_{1}-x_{2}\right| /\left(\left|x_{1}+x_{2}\right| / 2\right) * 100 \%$

Example: Density of a Cylinder

$$
\begin{aligned}
& \rho=m / V \\
& \rho=m /\left(\pi r^{2} h\right) \\
& \rho=\frac{\bar{m}}{\frac{\pi}{4} \overline{\mathrm{~d}}^{2} \bar{h}}
\end{aligned}
$$

$\delta \rho=\sqrt{\left(\frac{\partial \rho}{\partial m} \delta m\right)^{2}+\left(\frac{\partial \rho}{\partial d} \delta d\right)^{2}+\left(\frac{\partial \rho}{\partial h} \delta h\right)^{2}}$
$\delta \rho=\sqrt{\left(\frac{\rho}{m} \delta m\right)^{2}+\left(\frac{2 \rho}{d} \delta d\right)^{2}+\left(\frac{\rho}{h} \delta h\right)^{2}}$

Check your units!

Density of a Cylinder

$$
\rho=\frac{\mathrm{m}}{\frac{\pi}{4} \mathrm{~d}^{2} \mathrm{~h}} \quad \delta \rho=\sqrt{\left(\frac{\rho}{m} \delta m\right)^{2}+\left(\frac{2 \rho}{d} \delta d\right)^{2}+\left(\frac{\rho}{h} \delta h\right)^{2}}
$$

Assume, after measuring d, h , and m three times each, you get

$$
\begin{aligned}
\mathrm{m} & =492.0 \pm 0.5 \mathrm{~g} \\
\mathrm{~h} & =11.00 \pm 0.01 \mathrm{~cm} \\
\mathrm{~d} & =4.00 \pm 0.02 \mathrm{~cm}, \quad \rho=3.559 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

But precession of tools are 0.5 g and 0.15 cm .

$$
\begin{gathered}
\delta \rho=3.559 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \sqrt{\left(\frac{0.5 \mathrm{~g}}{492.0 \mathrm{~g}}\right)^{2}+\left(\frac{2 \times 0.02 \mathrm{~cm}}{4.00 \mathrm{~cm}}\right)^{2}+\left(\frac{0.15 \mathrm{~cm}}{11.00 \mathrm{~cm}}\right)^{2}} \\
\delta \rho=3.559 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \sqrt{0.001^{2}+0.010^{2}+0.014^{2}}=0.0613 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \\
\rho=3.56 \pm 0.06 \mathrm{~g} / \mathrm{cm}^{3}, \delta \rho / \rho=0.02,2 \% \text { error }
\end{gathered}
$$

$$
\begin{gathered}
\text { Density of a Cylinder } \\
\rho=\frac{\mathrm{m}}{\frac{\pi}{4} \mathrm{~d}^{2} \mathrm{~h}} \quad \delta \rho=\sqrt{\left(\frac{\rho}{m} \delta m\right)^{2}+\left(\frac{2 \rho}{d} \delta d\right)^{2}+\left(\frac{\rho}{h} \delta h\right)^{2}} \\
\delta \rho=3.559 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \sqrt{\left(\frac{0.5 \mathrm{~g}}{4992.0 \mathrm{~g}}\right)^{2}+\left(\frac{2 \times 0.02 \mathrm{~cm}}{4.00 \mathrm{~cm}}\right)^{2}+\left(\frac{0.15 \mathrm{~cm}}{11.00 \mathrm{~cm}}\right)^{2}} \\
\delta \rho=3.559 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \sqrt{0.001^{2}+0.010^{2}+0.014^{2}}=0.0613 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
\end{gathered}
$$

Which term contributes most to error? How can you reduce the error?

Rule of thumb: If more than 10 measurements of a single variable are needed, use a better instrument or method to reduce σ_{m}.

Weighted Average

- n values, each with their own error, $\mathrm{x}_{\mathrm{i}} \pm \sigma_{\mathrm{i}}$
- The error in this weighted mean can be found from propagation of error

$$
\frac{\partial \bar{x}}{\partial x_{i}}=\frac{\left(\frac{1}{\sigma_{i}}\right)^{2}}{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}}
$$

$$
\begin{aligned}
& \delta \bar{x}=\frac{\sqrt{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{4} \sigma_{i}^{2}}}{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}} \\
& \delta \bar{x}=\frac{\sqrt{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}}}{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}}=\left(\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}\right)^{-1 / 2}
\end{aligned}
$$

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}\left(\frac{1}{\sigma_{i}}\right)^{2}}{\sum_{i=1}^{n}\left(\frac{1}{\sigma_{i}}\right)^{2}}
$$

Weighted Mean Examples

- You measure 5 sets of (E, T) data to try to find σ in the Stephan-Boltzmann Law, $\mathrm{E}=\sigma \mathrm{T}^{4}$
- You can' t average E \& T and find one σ from the average.
- Find 5σ 's, find the weighted mean using the $5 \delta \sigma$'s calculated from propagation of error, then find the uncertainty of the weighted mean.

Homework

- Find the density of your Cougar One Card (UH ID card) and find the estimated error in the density.
- Find the standard deviation of the mean for each measured value. Compare it to the uncertainty in the measurements and decide which to use. Explain your choices.
- Use propagation of error to find the uncertainty in the density. Show the equation you derive.
- Your precision should be less than 30\%.

